\qquad

Math 230, Midterm
 Summer 2012
 July 16, 2012

Prob.	Points	Score
1	10	
2	20	
3	20	
4	10	
5	10	
6	10	
7	10	
8	10	
Total	100	

Instrctions:

- You have 90 minutes to complete the exam.
- You may not use books, notes or calculators.
- Read each question carefully.
- Write legibly and show your work. Feel free to use both sides of each page.
- Ask for additional paper if you need.
- This exam has 11 pages and 8 problems. Please make sure that all pages are included. GOOD LUCK !

Question 1. (10 points) True or False? Circle the correct answer. No justification needed.
(a) If \vec{a} and \vec{b} are non-zero parallel vectors then for any vector $\vec{c},\left|\operatorname{comp}_{\vec{a}} \vec{c}\right|=|\operatorname{comp} \vec{b} \vec{c}|$.
True False
(b) For any two vectors \vec{a} and $\vec{b}, \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$ and $\vec{a} \times \vec{b}=\vec{b} \times \vec{a}$.
(c) The point $(-4,0)$ in rectangular coordinates has $(-4,3 \pi)$ as one of its polar coordinate representations.

True False

(d) If $\vec{r}(s)$ is the arc length parametrization of a curve with a given starting point and a direction, then $\vec{r}^{\prime}(s)=\frac{d}{d s} \vec{r}(s)$ is the unit tangent and $\left\|\vec{r}^{\prime \prime}(s)\right\|=\left\|\frac{d^{2}}{d s^{2}} \vec{r}(s)\right\|$ is the curvature to the curve at $\vec{r}(s)$.

$$
\text { True } \quad \text { False }
$$

(e) The equation $x^{2}+y^{2}=1$ represents a circle in both \mathbb{R}^{2} and \mathbb{R}^{3}.

$$
\text { True } \quad \text { False }
$$

Problem 2. (20 Points) Let $P=(1,0,0), Q=(2,1,1)$, and $R=(0,1,1)$. Answer the following.
(a) Find the cosine of the angle between $\vec{a}=\overrightarrow{P Q}$ and $\vec{b}=\overrightarrow{P R}$.
(b) Find vectors \vec{u}, \vec{v} such that $\vec{u}+\vec{v}=\vec{a}, \vec{u} \| \vec{b}$ and $\vec{v} \perp \vec{b}$. (Hint. use projection)

Continuation of problem 2 from previous page, points $P=(1,0,0), Q=(2,1,1)$ and $R=(0,1,1)$.
(c) Find the area of the the triangle $\triangle P Q R$.
(d) Find the equation of the sphere with center P and passing through R.

Question 3. (20 points) Line L_{1} is given by the symmetric equations $\frac{x-1}{2}=-y=\frac{z+2}{3}$.
(a) Find the parametric equation for the line L_{2} which is parallel to L_{1}, and passes through $(2,1,-1)$.
(b) Find the equation of the plane \mathcal{P} containing the lines L_{1} and L_{2}.

Continuation of problem 3 from previous page.
(c) What is the distance between the point $(1,1,1)$ and plane \mathcal{P} ?
(d) Find the point on plane \mathcal{P} closest to $(1,1,1)$. (It is the point where the line perpendicular to \mathcal{P} passing throught $(1,1,1)$ intersects the plane \mathcal{P}.)

Question 4. (10 points) Consider the surface given by the equation $-x^{2}+4 y^{2}-z^{2}=4$.
(a) Sketch the $x=0, z=0$ and $y=\sqrt{2}$ traces on the graphs below. Clearly label the intercepts (points where the curves meet the axes).

(b) What is the $y=0$ trace?
(c) What is the surface called and which axis does it open along?

Question 5. (10 points) Match the following surfaces with their graphs:
(a) $z=\cos \left(\sqrt{x^{2}+y^{2}}\right)$
(b) $-x^{2}+4 y^{2}-z^{2}=4$
(c) $4 x^{2}+9 y^{2}+9 z^{2}=36$
(d) $4 x^{2}+9 z^{2}=36$
(e) $z=2 x^{2}-y^{2}$

Question 6. (10 points) Consider the curve in \mathbb{R}^{2} given by the equation $r=e^{\theta}$ in polar coordinates.
(a) Write down the parametric equation for the curve in rectangular coordinates with parameter θ.
(b) What is the tangent line to the curve at the point where $\theta=\pi$?
(c) Find the length of the curve between $t=0$ and $t=\ln (5 \sqrt{2}+1)$.

Question 7 (10 points) Consider particle 1 moving in space with acceleration

$$
\vec{a}(t)=\left\langle-6 t,-4 \pi^{2} \cos (2 \pi t),-\pi^{2} \sin \left(\frac{\pi}{2} t\right)\right\rangle
$$

It has initial position $\langle 0,1,0\rangle$ and initial velocity $\langle-1,1,2 \pi\rangle$.
(a) Find the position function $\overrightarrow{r_{1}}(t)$ of the particle.
(b) Does it collide with particle 2 whose position function is $\overrightarrow{r_{2}}(t)=\left\langle-2 t^{2}, t+t^{2}, 4 t^{3}\right\rangle$?

Question 8 (10 points) The following parametric curve is a spherical spiral

$$
\vec{r}(t)=\langle\sin (t) \cos (4 t), \sin (t) \sin (4 t), \cos t\rangle \quad 0 \leq t \leq \pi
$$

(a) Note that $\vec{r}\left(\frac{\pi}{2}\right)=\langle 1,0,0\rangle$. What are the tangent, and unit tangent vectors to the curve at $(1,0,0)$?
(b) Calculate the curvature of the curve at $(1,0,0)$. (Choose the formula that will minimize calculation.)

